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LETTER TO THE EDITOR 

‘Valley structures’ in the phase space of a finite 3D Ising spin 
glass with &I interactions 

T Klotz and S Kobe 
institut fur Theoretische Physik, TU Dresden, Momensvasse 13, D-01062 Dresden, Federal 
Republic of Germany 

Received 28 lune 1993 

Abstract. Exact results for ground states and low-lying excitations of shon-range !sing spin 
glass systems in three dimensions are presented. Using an exact method of nonlinear discrete 
optimization ‘valley swctures’ in the phase space can be analysed for finite systems. The 
existence of non-uivid breaking of ergodicity at zro temperature is shown by arranging the 
highly degenerate ground states in several valleys, which are connected only by the excited 
states. 

The strange structure of the phase space seems to be related to the unusual behaviour of spin 
glasses, but up to now there has been no detailed knowledge concerning this structure. It was 
found that the geometry of the space of equilibrium states has a special hierarchical topology 
characterized by ultrametricity [lI and by bifurcation-like splitting 121. A complex spanning 
phase-space structure is suggested by the method of damage spreading [3] analogous to a 
percolating cluster in a high-dimensional hypercube [4]. There is evidence for non-trivial 
breaking of ergodicity at zero temperature [5]. 

Because of the high dimension of phase space and the non-polynomial effort in finding 
ground states and excitations of spin-glass models, a detailed analysis is very difficult. For 
two-dimensional spin-glass systems without external field the ground states are found either 
by exact minimization for small lattice sizes with polynomially increasing computing time 
[GI or by heuristic algorithms (see e.g. [9-1 I]). However, two-dimensional problems with 
external field [I21 and three-dimensional ones 1131 belong to the class of NP-hard problems 
[14]. This fact suggests that it is onlikely that an algorithm that works as efficiently as in 
the former case can be found. 

In this work the algorithm of branch-and-bound is used [15], which allows one to find 
exactly all ground states and all low-lying excited states for small systems in reasonable 
computing time. The aim is to analyse the topology of the phase space by considering 
distances and connections of states in the phase space. 

Cubic Ising spin glass systems on a 4 x 4 x 4 lattice with fl interactions between 
nearest neighbours are considered. Periodic boundary conditions in all three directions are 
assumed. The distribution of interactions is chosen randomly with an exact distribution of 
50% each of ferromagnetic and antiferromagnetic bonds. The zero-field Hamiltonian 

is considered, where the sum is over nearest neighbours. 
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Figure 1. Energy and degeneracy of ground states for 200 random systems 

Using the method of branch-and-bound all ground states of one system are found in a 
CPU time of about one minute on an DM3090-200Y VF computer. 

The results for an ensemble of 209 systems with different distributions of interactions 
are shown in figure 1. The values of energies found are very similar to those found in 151. 
The limiting cases of.an unfrustrated and a fully frustrated system are especially marked. 
The ground-state energy and entropy per spin are calculated as 

(2) 
E J N  = 1.733(rtO.O13)Z 

S I N  0.073(10.007)k~ 

where Z is the strength of interaction, k~ is the Boltzmann constant and N is the number 
of spins. The given errors are statistical ones. 

The ground-state energy per spin is in good agreement with results in [16-18], however 
the entropy values found in [16,17] are significantly too small. 

In [la] the entropy value (0.04 i 0 . 0 l ) k ~  was estimated from systems with periodic 
boundary conditions in only two directions. Obviously, the significantly different results 
are caused by the different boundary conditions. This can be confirmed by comparing 
calculations for systems as considered in [16], which have led to a good agreement. 

A ground-state entropy per spin of 0.062k~ was found by the Monte-Carlo method 1171 
for systems with 20 x 20 x 20 spins. The deviation from (2) is presumably caused by the 
fact that not all ground states are found by this method. Otherwise, because of the non- 
polynomially increasing effort in finding ground states, the influence of finite-size effects 
could not proved by our method for larger systems. 

In the following, one representative system taken from the ensemble of 200 systems in 
figure 1 is studied in more detail. For this system the values for energy and degeneracy up 
to the third excitation are given in table 1. 
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Table 1. Energy and degeneracy of the ground state and the low-lying excitations for the 
representative system. 

Excitation Energy I I Degeneracy 

0 -112 60 
I - IO8 3.910 
2 -104 94.740 
3 -100 1.537.086 

;sifv the states found, first the neizhbourine. r - - : phase space are 
investigated. Doing this, the 60 ground states can be arranged into four groups, which we 
call clusters in the phase space. 

tions in 

Figure 2. Schematic representation of clusters in the Figure 3. Ground-state cluster I (0 denotes spin 
phase space. up, 0 denotes spin down, 0 denotes spin not 

fixed, - denotes ferromagnetic interaction and 
_- -  denotes antiferromagnetic interaction). 

To illustrate the term cluster we assume that. the lattice in figure 2 represents the phase 
space of the spin system. One node of this lattice belongs to one spin configuration. The 
spin configurations of two neighbouring nodes differ in the orientation of only one spin, 
this means they have the Hamming distance (HD) one. Assuming that nodes marked by full 
circles in figure 2 represent a certain subset of all configurations, a classification into two 
clusters is possible. In general, two-spin configurations belong to the same cluster if there 
exists a chain connecting them, which is built up by neighbouring members of this cluster, 
i.e. there exists no way between different clusters. In contrast to earlier investigations 
the knowledge of all ground states and energetically low-lying states makes.it possible 
to find exactly all these clusters. As a result of an analysis of the ground states of the 
representative system, four clusters can be found (table 2). Due to the symmetry of the 
Hamiltonian, for every ground-state cluster a mirror image exists. In addition.to this trivial 
breaking of ergodicity at zero temperature there is a non-trivial one, caused by the two 
remaining different clusters. 

These clusters are not closely packed, but the large values of the minimal Hamming 
distances between different clusters (table 2) leads to the conclusion that they seem to spread 
out over the whole phase space. 

To visualize which spin configurations form a single cluster, the spins, which are fixed in 
all configurations of this cluster, are marked by filled (s = + I ,  spin up) or empty (s = -1, 
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Table 2. Size of the four ground-state clusters for the representative system and the minimal 
Hamming distance's between ?em. 

Minimum HD 

Cluster Size 1 2 3 4 

I 18 - 21 59 34 
2 I2 21 - 34 59 
3 18 59 34 - 21 
4 12 34 59 21 - 

Figure 4. Ground-state cluster 2 (e denotes spin 
up, 0 denotes spin down, 0 denotes spin not 
Exed. - denotes ferromagnetic interaction and 
- -_ denotes antiferromagnetic interaction). 

spin down) circles in the cubic 4 x 4 x 4 lattice (figures 3 and 4). The variable spins 
are marked by squares. In cluster 2 (figure 4) there are two isolated spins at A and B. 
The minimal energy of the two spins at C is realized by three of the four possible states. 
So this cluster is formed by 2 x 2 x 3 = 12 spin configurations. Analogously there are 
2 x 3 x 3 = 18 possible configurations in the first cluster (figure 3). 

c ' phasespace > 

Figure 5. Schemalic picture of the 'valley svucture' of the representative system. 

If, additionally, the spin configurations of energetically low-lying excitations are taken 
into consideration, an analogous analysis of existing clusters in the phase space leads to a 
schematic picture of the phase space (figure 5). 
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With increasing excitation there exist the following effects: 

the appearance of new clusters; 
the fusion of low-lying clusters; 
the fusion of low-lying clusters with their ‘mirror images’ in the phase space to form a 
large cluster in the second excitation. 

The last effect is of special interest. The cluster, which is buiit by most of the 
configurations up to the second excitation, already connects each spin configuration with its 
‘mirror image’ in phase space, which have the maximal Hamming distance of N = 64. 
Otherwise, this cluster is very small in comparison with the whole number of states 

A first attempt to analyse the inner structure of this cluster is made by a calculation of 
the frequency of relative Hamming distances (figure 6). The symmetry in figure 6 for the 
Hamming distance 32 is caused by the mirror symmetry of the phase space. However the 
maxima and minima seem to result from the four ground-state valleys. 
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Figure 7. Frequency of the number of nearest 
neighbours for all spin mnfigumtions with maximum 
second excitation (there is a third, very small peak a[ 
S2 nearest neighbours). 

Figure 6. Frequency of Hamming distances for all spip 
configurations with maximum second excitation. 

The number of nearest neighbours in the phase space that belong to the same cluster, is 
a measure for a kind of ‘local dimension’. In figure 7 the frequency of the number of nearest 
neighbours for the cluster of second excitation is shown. There are three separate peaks in 
this curve. By a detailed test these peaks could be identified as being caused hy the spin 
configurations of the second excitation, the first excitation and the ground state, respectively. 
Although there are large quantitative sample-to-sample fluctuations, the qualitative picture 
of the phase-space structure is the same, exccpt for samples with a very small degeneracy 
of the ground state (see figure 1) showing only a trivial ergodicity breaking? 

In this letter we have shown that even in simple, very small spin-glass model systems, 
non-trivial breaking of ergodicity at zero temperature definitely exists as suggested in IS]. 
Different ground-state valleys are separated by energy baniers with respect to single-spin 
flips. There are no zero-energy paths between them. It is suggested that this effect is more 
pronounced with increasing size of the sample, cf also [SI. By including the energetically 
low-lying excitations one can find complex phase-space swuctures, which are characterized 
by the existence of clusters in phase space, which appear, expand and join with increasing 
excitation. In particular, the internal structure of the ground states is very compact (‘high- 
dimensional’). The ground states are surrounded by the spin configurations of the first and 
second excitation with a more net-like organization. This picture is in good agreement with 
the structure suggested in 131. 



L100 Letter to the Editor 

References 

Ill 
I21 
[31 
[41 

Mezard M, Parisi G, Sourlas N, Toulouse G and virasom M I984 Phys, Rev. Len. 52 1156 
Palmer R G 1982 Ad". Phys. 31 669 
Campbell I A and de Arcangelis L 1990 Europhys. Left, l3 587 
Campbell I A, Flesselles I M, Jullien R and BOW R 1988 Phyr. Rev. B 37 3825 
Sourlas N 1988 Euruphys. LelL 6 561 
Bieche I, Maynard R. Rammal R and Uhry J P 1980 J. Phys. A: Math. Gen. 13 2553 
Barahona F, Maynard R, Rammaf R and Uhry J P 1982 1. Phys. A: Marh. Gen. 15 673 
Bendisch J 1992 1. Slat. Phys. 67 1209 
Freund H and Grassberger P 1989 J. Phys. A: Mark Gcn 22 4045 
Bendlsch J 1991 J. Star. Phys. 62 435 
Kawashima N and Suzuki M 1992 1. Phys. A: Math. Gen 25 1055 
Gratschel M, Iiinger M and Reinelt G I987 Heidelberg Colloquium on Glassy Dynamics ed I L van Hemmen 

and I Morgenstem (Berlin: Springer) p 325 
Byahona F and Maccioni E 1982 1. Phys. A: Math Gen. 15 L611 
Barahona F 1982 1. Pkys. A: Maih. Gen. 15 3241 
Hartwig A. D a s h  F and Kobe S 1984 Comp. Phys. C o m u n .  32 I33 
Morgenstein I and Binder K 1980 Z Phys. B 39 227 
Kirkpatrick S 1977 Phys. Rev. B 16 4630 
Berg B A, Celik T and H a n s m m  U 1993 Europhys. Left. 22 63 


